A town of 1,000 households has a strange law intended to prevent wealth-hoarding. On January 1 of every year, each household robs one other household, selected at random, moving all of that house’s money into their own house. The order in which the robberies take place is also random and is determined by a lottery. (Note that if House A robs House B first, and then C robs A, the houses of A and B would each be empty and C would have acquired the resources of both A and B.)
Two questions about this fateful day:
What is the probability that a house is not robbed over the course of the day?
Suppose that every house has the same amount of cash to begin with — say $100. Which position in the lottery has the most expected cash at the end of the day, and what is that amount?
[Solution]
Long Division
In the long division below, each asterisk represents a whole number — any digit from 0 to 9. Reconstruct all the calculations, given that there is no remainder.
[Solution]
Lucky Derby
The bugle sounds, and 20 horses make their way to the starting gate for the first annual Lucky Derby. These horses, all trained at the mysterious Riddler Stables, are special. Each second, every Riddler-trained horse takes one step. Each step is exactly one meter long. But what these horses exhibit in precision, they lack in sense of direction. Most of the time, their steps are forward (toward the finish line) but the rest of the time they are backward (away from the finish line). As an avid fan of the Lucky Derby, you’ve done exhaustive research on these 20 competitors. You know that Horse One goes forward 52 percent of the time, Horse Two 54 percent of the time, Horse Three 56 percent, and so on, up to the favorite filly, Horse Twenty, who steps forward 90 percent of the time. The horses’ steps are taken independently of one another, and the finish line is 200 meters from the starting gate.
Handicap this race and place your bets! In other words, what are the odds (a percentage is fine) that each horse wins?
[Solution]
Paint Balls
You play a game with four balls: One ball is red, one is blue, one is green and one is yellow. They are placed in a box. You draw a ball out of the box at random and note its color. Without replacing the first ball, you draw a second ball and then paint it to match the color of the first. Replace both balls, and repeat the process. The game ends when all four balls have become the same color. What is the expected number of turns to finish the game?
[Solution]
Highest Card
From a shuffled deck of 100 cards that are numbered 1 to 100, you are dealt 10 cards face down. You turn the cards over one by one. After each card, you must decide whether to end the game. If you end the game on the highest card in the hand you were dealt, you win; otherwise, you lose.
What is the strategy that optimizes your chances of winning? How does the strategy change as the sizes of the deck and the hand are changed?
[Solution]